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Accurate Hybrid-Mode Analysis of Various
Finline Configurations Including
Multilayered Dielectrics, Finite Metallization
Thickness, and Substrate Holding Grooves

RUDIGER VAHLDIECK

Abstract — An accurate analysis of various finline configurations is intro-
duced. The method of field expansion into suitable eigenmodes used
considers the effects of finite metallization thickness as well as waveguide
wall grooves to fix the substrate. Especially for millimeter-wave range
applications, the propagation constant of the fundamental mode is found to
be lower than by neglecting the finite thickness of metallization. For
increasing groove depth in cases of asymmetrical and “isolated finline,”
higher order mode excitation reduces the monomode bandwidth signifi-
cantly. In contrast to hitherto known calculations, this parameter only
causes negligible influence on a fundamental mode if the groove depth is
lower than half of the waveguide height.

I. INTRODUCTION

ILLIMETER WAVE application of finline structures
Mis of increasing importance for E-plane integrated
circuit designs [1]-[5]. Real structure parameters, like finite
metallization thickness, and waveguide grooves to fix the

Manuscript received November 7, 1983; revised June 4, 1984.

The author was with the Microwave Department, University of Bre-
men, Federal Republic of Germany. He is now with the Department of
Electrical Engineering, University of Ottawa, Ottawa, Ont., Canada KI1N
6NS.

inset, considerably influence circuit behavior, especially in
the higher frequency range. As for the metallization thick-
ness, this influence has already been demonstrated by the
example of low-insertion-loss finline and metal-insert filters
(5], [6]-

Hitherto known design theories [8], [11]-[18], however,
widely neglect the influence of these parameters, and are
considered, therefore, to yield appropriate finline circuit
designs only for the lower frequency range. The unilateral
earthed finline investigations by Beyer [19] reveal that both
parameters have relatively high influence on fundamental
mode behavior. In [19], the Ritz—Galerkin method is used
and the continuity of the odd TE-mode field at the inter-
faces is applied as an example.

A comparison to the propagation constant of an ideal-
ized finline structure, given by Hofmann [9], seems to be in
good agreement with [19] only when comparing finite strip
thickness (70 pm) and zero groove depth or finite groove
depth (0.326 mm) and zero strip thickness. It appears that
this problem has not yet been solved completely as evi-

0018-9480 /84 /1100-1454$01.00 ©1984 IEEE
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x=a Ll ad a2t x=0

Fig. 1. Generalized finline structure with homogeneous and lossless

dielectric in each subregion (g, =1).

denced by the absence of thorough investigation of higher
order mode behavior with respect to the technologically
conditioned circuit dimensions.

The purpose of this paper is to describe an accurate
hybrid mode theory of a generalized finline configuration
(Fig. 1) which includes finite strip thicknesses, substrate
supporting grooves, asymmetric structures, and more than
one dielectric region.

The higher order mode analysis presented utilized a
generalized transverse-resonance relation which has al-
ready been successfully applied at microstrip structures [7]
to reduce the size of the characteristic matrix equation
considerably compared with the mode-matching technique
in [10], [19]. In contrast to [19], the hybrid mode descrip-
tion used in this paper automatically involves the coupling
of TE- and TM-waves. It will be shown that, only for
finlines with homogeneous cross section (e,=1, ridged
waveguide) or at cut-off frequencies both types of waves
are decoupled. For the generalized case, therefore, inclu-
sion of the TE- and TM-wave coupling effects on the field
to be matched at the interfaces is necessary.

The transverse-resonance hybrid mode theory used in

.this paper yields a very efficient computer program to
evaluate the normalized propagation constant. Numerical
results are presented, especially for the E and T band and
comparison with available results [4], [8]-[12], [14] estab-
lishes the accuracy of the numerical solutions in some
special cases. In addition to the hybrid mode dispersion
characteristics given, the effects due to finite metallization
thickness and waveguide grooves are investigated in detail
in order to provide design information for the practical
choice of finline structural parameters.

II. THEORY

The generalized finline structure given in Fig. 1 can be
regarded as a transversal inhomogeneous parallel-plate line
subdivided into partial homogeneous crossection (vel, II,
III, IV, V, and VI). The electromagnetic field

- ) -
EV=vxvx][] -jepvx]I]
€ m
. - (») — (»)
HO=vxvx][] +jee”vx]]

m e

(1)

@
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in each subregion is expanded in an infinite series of
eigenmodes and derived from the axial z components of
the two independent vector potentials H and H , which
are assumed to be a sum of suitable elgenfunctlons

) _ -

)Imgv)(x) e —jkz-z

®)

o0
(") (v » ~ykz-z
E fs(ng(y) Ueld(x)-e™* (4)

satisfying the boundary conditions and the scalar wave
equation.

Considering the y-dependent boundary condition, the
abbreviation fs{3(y) and fe{}}(y) are given by

cos ky(r)
fi+s,,

fs((;;(y) = sin kJ’(n)

JeB(y)=

ky((:)) = f(v)

g =1y =51,y =bs, 3,7,y = b3,y = b]

& =[b,— by, bs—bs, b, b, by~ by, by — b,]
with the Kronecker delta 8,,. Im{)}(x) and Ue{}(x) de-
note the partial wave amphtudes explained in the Appen-
dix. The transverse resonance principle [7] is applied to
reduce the size of the characteristic matrix equation for
determining the normalized propagation constant kz/ko.
For that reason, partial wave amplitudes

Im%’,‘,))(x), Ue{3(x)

and

1 dUeg)(x)

Ie)(x) =
(n)( ) ]kxg:; dx
dIm{)(x)
v T\
UmEn))(x)— o

summarized as vectors U® and I at the left-side
boundary (x = x0) of each subregion (») are determined
by the amplitudes of its right-side boundary (x = xu). The
transfer matrix R® gives the relation between I and
U™ at the two coordinates in the following manner

v®™ B Rc®  Rs® U™
IO | Rs®  Re® I®

(x=xo0) O (x=xu)

(5)

with the diagonal matrices Rc®, Rs®, and Rs’ given in
the Appendix.

To satisfy the continuity condition at each common
interface, modified continuity equations lead to the follow-
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ing expressions

ATICHD T I
. mz _ mz _ pr(v) ez
Ey: Fp Tx K (w, kz) 3y (6)
Ez: T¢™Y=K"(w,kz)TI® (7N
Hz: TI¢ Y =K®(w, kz)IIY) (8)
JMC+D g™ ATI™
. ez — r . ez (v) mz
Hy: pp o o + K| (w,kz)—ay
)
with
) — (kz ko)’
K(v)(w, kZ) — €r ( Z/ 0)

eﬁ"“)—(kz/ko)2
K(")(w kz) = E(1— K(")(w kz))
I_‘, bl w” b

for K" (w, kz) replace € - ¢+ by p.

The coupling between TE and TM waves is automati-
cally involved in (6)—(9). Only in cases of finline configura-
tions with homogeneous cross-sectional propagation media
(e.g., ridged waveguide) or at cut-off frequency (kz /ko = 0),
both types of waves are decoupled since Kp(w, kz) and
Ke™(w, kz) vanish.

The left-side (v +1) x-dependent partial wave ampli-
tudes in (6)—(9) are separated by multiplying with ap-
propriate orthogonal functions which lead directly to the
transition matrix ¥ of each interface section and hence
combine the adjacent amplitude vectors I and I®*1 as
well as U® and U®HD

Um®+D i _j(")ec(") - f(V)K,fV)(w’ kz)ée™
Ue®+Y 0 yOK N (w, kz)es™
Im¢*D | = 0 0

JeC®+D 0 0
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The transverse resonance relation requires the boundary
conditions at the metallic surface x =0, x = a (Fig. 1), to
be considered now. With respect to the relation U ~ 0,
consequently the characteristic matrix equation is reduced
to the upper right quarter of the matrix product in (11)

[ 0 ] Gy} | Im®
0 G Ie® |
(x=a) (x=0)
G, is of size 2N —1 and the zeros of the determinant
det(Gy,) =0 (13)

which is a transcendent function of

he
GlZ

ee
G12

(12)

n-mw

kx{=koy[ e — (
() \/ ko

ko= wyp €,

(14)

(%)

provide the desired dispersion characteristic.

IIIL.

Dispersion characteristics of the dominant and first
higher order modes are given in Fig. 2 for the bilateral
finline. The structure shielded by a Ka-band waveguide
has the same dimensions as that used by Hofmann [8] and
Schmidt [12]. Considering finite thickness of metallization
(f1=1¢2=1 pum) and a dielectric between the fins (¢" = 3.0
= ¢!l see Fig. 1), results are in good agreement with these
authors. Without a slot dielectric (¢! = e/ =1.0), however,
evaluated data are 3 percent less, on the average. This
discrepancy can be explained by the fact that, due to an

RESuULTS

0 0 Um™
0 0 Ue®™
FOK N (w, kz)ec™ 0 m® |. (10)

e®
~ K0, kz)as®  Fo—r

Te®
e (v+1) ¢

es™

(x=a,),

The abbreviations are explained in the Appendix.

Successively applying the transfer matrix R® to the
corresponding transition matrix V' finally leads to a
relation between amplitude vectors at the left (x = @) and
the right boundary (x = 0)

U] _ pon. TT por g | U®
| Vo] = T verre [50]
(x=a) (x=0)

G

For the numerical solution, the infinite set of equations for
U, and I, is truncated by the end index L =2N —1; so,
the matrix size of G is of order 4N —2 and keeps constant,
even for an increasing number of discontinuities. If N is
the number of summation terms in (3) and (4) for ail
investigated finline structures, a maximum of N =17 has
turned out to be sufficient.

ym

(x=a,)

infinitely thin metallization [8], [12], the field between the
fins is mainly concentrated within the dielectric and thus
causes a higher value of propagation constant.

In order to demonstrate the fundamental mode behavior
in finlines with considerable metallization thickness at 75
GHz (Fig. 3(a)), unilateral and bilateral finlines with thin
substrates are considered. In the case of a bilateral finline
with relatively thick substratein a 7-band waveguide mount
(Fig. 3(b)), the influence of the finite strip thickness on the
fundamental mode is smaller and deviations from values
with negligible strip thickness given in [4] are not as high as
expected in view of Fig. 3(a).

Fig. 4 shows the influence of the groove depth e on the
propagation constant for the unilateral finline centered in
the waveguide (E band). Comparing the results with Beyer
[19] and using his definition of €, which gives a relation
between the cut-off wavelength of an equivalent air-filled
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Fig. 2. Dispersion characteristic of a bilaterial finline (¢W: electric wall,
mw: magnetic wall; a=7112 mm, h=a/2; ¢,=3.0; D=125 pm;
w=05mm; (------- ) t=1.0 pm, €’ =3.0; ( Ye¥ =10, a: t=5
pm, b: t=1 pm; (----) nonexcited modes, +=1.0 pm, groove depth
e=0).

ridged waveguide and the finline wavelength at 75 GHz,
the disagreement is significant (Fig. 4(a)). Since the field is
concentrated mainly in the slots, one expects that the depth
of the grooves has only a minor influence on the dominant
mode. This fact has been confirmed with the present
method for all investigated finlines with various slot widths
and groove depths lower than half of the waveguide height.
However, the second-order mode propagation which limits
the practically most interesting monomode range is highly
influenced. This behavior is illustrated in Fig. 4(b) contain-
ing the bandwidth which is a ratio of the nearly constant
first cut-off wavelength A, and the next higher mode
cut-off wavelength A, versus the groove depths. Although
the first higher order mode for the bilateral finline reveals
the highest dependence on groove depth, this mode is not
excited by an H,,-wave of the empty waveguide. In con-
trast to other finline structures, the next excitable higher
order mode (HE,, Fig. 2) indicates a negligible influence
on groove depth. So, this configuration provides the highest
monomode range. If the grooves are deeper than half of the
waveguide height, for a unilateral finline with the same
dimension given in Fig. 3(b), Fig. 4(c) shows an obvious
interaction between the fundamental and second higher
order mode and results in a significant deviation of disper-
sion characteristics (Fig. 5) from those given in [4]. This
interaction effect is also evident for a generalized finline
structure with multilayered dielectrics and different
metallization thicknesses (Fig. 6). This structure obviously
reveals the necessity to consider all important higher order
modes.

Similar observations are possible in other asymmetrical
configurations, but will be of minor interest for small
substrate thicknesses with low dielectric constant and small
groove depths related to the waveguide height. This is
demonstrated (Fig. 7) for an antipodal finline with non-
overlapping fins. The bandwidth behavior, as well as the
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Fig. 3. (a) Fundamental mode (HE,) versus the metallization thickness
t(pm) in a unilateral finline b with several slot widths w(mm). a a
bilateral finline for comparison (¢ =3.1 mm, h=a/2; D=50. pm,
€, =3.0, e=0.326 mm). (b) Fundamental mode (HE,) versus the slot
width in a bilateral finline (¢=1.65 mm, A=a/2; D=110 um,
€, =375 e=0; ( ) t=0.5 pm, € =3.75 (----)e/ =10, a:
t=05pm, b: t=5 pm).

dispersion characteristic, resembles somewhat that of a
comparable unilateral structure, but all higher order modes
are excited.

Modal dispersion curves of a so-called “isolated finline”
are presented in Fig. 8. In practical applications for active
components, one or both fins are isolated by a gasket
which allows a dc voltage to be developed across the fins.
RF continuity between the fins and the waveguide wall is
achieved by using a choke section of a quarter wavelength
groove in the waveguide broadwall at center frequency.
Neglecting the groove as well as the finite metallization
thickness shows a good agreement with the cut-off wave-
length obtainable from [14]. In practical realization, how-
ever, this configuration provides TEM behavior which is
also neglected in [14], [16] and leads to a somewhat differ-
ent theoretical procedure.

Furthermore, it should be noticed that, in contrast to the
unilateral and antipodal finline, where the next excitable
higher order modes result originally from the H, -, respec-
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Fig. 4. (a) Fundamental mode (HE,) versus the groove depths ¢ in a
unilateral finline with several slot widths w(mm) (¢ = 3.1 mm, k= a /2;
D =500 pm, ¢, =3.0, t=70.0 pm)

1., L)
2R
Ap—free space wavelength, A, —finline wavelength (75 GHz),
A, —cutoff wavelength of an equivalent ridge waveguide. ( ) nor-
malized phase constant kz/ko). (b) Monomode bandwidth for a bi-
lateral, unilateral and isolated finline with several slot widths. For the
isolated finline D/2 =250 pm (see the structure in Fig. 8) (Acy:
cutoff-wavelength of the dominant mode, Ac,: cutoff-wavelength of the
next higher order mode excited by an incident H,y-wave). (¢c) Normal-
ized phase constant versus the groove depth in a unilateral structure
with several slot widths (¢ =1.65 mm, h=a/2; D=110.0 pm, ¢, =
3.75, t=5.0 pm).

values according to [19]} € = }\20 (
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Fig. 5. Dispersion characteristic for the first six eigenmodes in a
unilateral finline w = 0.3 mm, ¢ = 0.5 mm, all other dimensions accord-
ing to Fig. 4(c). (----) these modes are not excited by an incident
H,,-wave.
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f (GHz) ——

Fig. 6. Dispersion characteristic of an asymmetrical bilateral finline in
the Ka =band range (a=7112 mm, h=a /2, h1=1.0 mm, 72 =2.0
mm; D1=125.0 pm, =30, D2=12540 pm, V=96, ¢/ =3.75;
1=10.0 pm, ¢2 =500 pm; wl=15 mm, w2 =2.5 mm; e= 0.5 mm).

i
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Fig. 7. Dispersion characteristic of the first five eigenmodes in an
antipodal finline (¢ = 3.1 mm, h =4 /2; D =50.0 pm, €, =3.0; 1 =10.0
pm; w=0.8 mm; e=0.5mm).

tively, H ;-mode of the empty waveguide, the HE ,-mode in
Fig. 8 results originally from the H, -mode and shows a
high dependency on groove depth (Fig. 4(b)) which is not
observed for the same mode in the case of a symmetric
bilateral finline.
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Fig. 8. Dispersion characteristic of an isolated finline (¢=3.1 mm,
h=a/2; D=2200 pm, ¢, =3.75; w=0.6 mm; =50 pm; e=05
mm).

Finally, it must be emphasized that, for all these finline
modes, the field distribution differs widely from those of
an empty waveguide. The computation time for most sym-
metrical structures is 1-2 s, on the average, on a Siemens
7880. This corresponds to a 0.5- percent accuracy in the
calculation of one phase constant for one frequency sample
point.

IV. CoNCLUSION

A method Has been described which allows an accurate
analysis of various finline structures, including all im-
portant parameters of real dimiensions. Comparison be-
tween often used finline configurations indicates that the
bilateral finline behaves best and provides the largest
monomode bandwidth due to its virtual insensitivity to the
groove depth. In asymmetrical structures, higher order
modes cut-off frequencies are considerably reduced by the
depth of the groove, which is much more critical than the
strip thickness. Hence, it follows that, at high frequencies,
the grooves supporting the substrate cannot be neglected
and their influence is more significant than the effect of
finite metallization thickness. ,

APPENDIX I
Abbreviations for the partial wave amplitudes in (3) and
“)

g;))(x) A(v)ejkxE }oxa 4 B(V)e—ka{ }%a

(Co)ejkxé:a-x., - D((v)>e~jkx5:;-x,,)
n

Ue(‘Zﬁ(x) = (n)

1
Jkx()
X, =X0— XU
and for the diagonal matrices in (5)

[ Tox ).

Rc((;’,g— cosh(jkx(,,) xa) | 0.
0 cosh( jkx((;’,g-xa)

Jkx$3 s1nh(jkx§;}xa) 0

Rs() = i .
o 0 s1nh(jkx(")-x )
k ) (n) *a
i JEX (n)
1(y) smh(ka(("; x ) 0
Rs(' = Jkx s
0 kex () sinh  jkx)-x,
JEX (n) (n)
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Abbreviations in the transition matrix equation (10)

cov | B2=b 2 b 2
y()=[221

y<”>'=[ 2 b51 2

éc =

és(") -

’b’l’f,m

|

bs— by’ 2

FC(ID.p .

(Fs®T) "1 p. =
1

E-p- 3
FS(IV)T‘P .

FS(V)T'p .

ST

b4“‘b3
’ 7b4_b) 2

where és® receives an additional zero column, p is the

diagonal matrix with the elements i-# (i=1,2,3---,

N),

and Fc®), Fs®) are the coupling integrals

Fc(

Fc

(L))
(n,1)

11 T
{ll)l) —f ((n)I)(y) fc((l?

b4
o= [ RO R0

(n,i)

Fc™). = f
Feg, =

"fy_ 6fc(n)()’) fCEm(J’) dy
y=

(y)dy

(Z;)(J’) fc(,) (y)dy.

For the coupling iritegrals Fs”, replace fs*)(y) instead of

1e(y)

ec”) =

ec” =

(Fe®)™
Fe
E es®) =
(Fe™)™!
Fc™

FC(I)T
(Fc™T)—1
E és *) =
Fe@™’

(Fe™M)~ !

where E denotes the unit matrix.

Fs®"
(Fs@")!
E
Fs @7

(Fs(v)r)—1

(Fs®)™!

FsI
E

(Fs™)™
Fs™
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